Home Clean room MedAustron HEPHY testbeams old
electronics module assembly SiDDaTA
  HEPHY logbook of the Electronics Group, Page 3 of 4  Not logged in ELOG logo
ID Date Author Project Measurement Type Object IDup Subject
  43   Tue May 19 14:48:06 2015 Hao YinBelle IImoduleL6 Noise inJection RunsL6 Noise inJection Runs

Folder "L6_RLC_Test"

Configuration file: /mnt/data/ITA_NOISE_TESTS/L6_RLC_Test/SinglePeak_3Fadc.cfg

3 Tests: Injkection to 2.5V 1.25V. ground and their combination

Frequency scan with const ampl.:

points (index (run number) corresponds to frequency):

index  -  frequency[MHz]

1 - 0,5
2 - 0,7
3 - 0,8
4 - 1
5 - 2
6 - 3
7 - 5
8 - 7
9 - 8
10 - 10
11 - 15
12 - 20
13 - 30
14 - 40
15 - 50
16 - 80

0 - base line for comparison

Base line run with out injection.

Injection Test L6:

2.5V, 1.25V, ground (data prefix all_)

  17   Sun Jul 4 05:48:36 2010 Christian IrmlerBELLE UpgradesourceOrigami 6 - module 1run002: first analysis results

Run name: run002

Run type: 0 (Hardware (Normal Run))
Comments:
After ~40min warmup
HV=80
90Sr 1mCi source - moved compared to run001
multi6

Max. Events=100000      Trg delay=25

Origami 6 module #1
w/o cooling
sensor: B2HPK_10938-9239_8

n-side: all 4 APVs read out
p-side: APV #0 to #3  read out, analog output of #4 and #5 were not connected to FADC board

 

 

Entry is currently edited by Hao Yin on 255.255.255.255    50   Fri May 29 11:47:56 2015 Hao YinBelle IIsystemPS FilterTesting PS LV filter and quantifying the required min noise lvl

Data of this entry is recorded in the folder: LV315kHz_Injections
Injecting noise to LV with a freq. of 314 kHz to emulate Caen PS with KenWood PS.

Run Name 315kHzKenWood_: (injecting cmc noise into p-side lv) (attachment 1)
000 ... baseline noise
001 ... 4mA
002 ... 1mA
003 ... 1mA wo Amplifier
004 ... 4mA wo Amplifier
005 ... 0.5mA wo Amplifier
006 ... 2mA wo Amplifier
007 ... 0.2mA wo Amplifier

Run Name 315kHzKenWood_Filter_BW_: (injecting cmc noise into p-side lv with filters (inductance with 470 mH x 6 ) conn. at bw) (attachment 1) (wo Amplifier)
000 ... baseline noise
001 ... 0.2mA
002 ... 0.4mA
003 ... 0.5mA
004 ... 1mA
005 ... 2mA
006 ... 4mA

Run Name 315kHzKenWood_Filer_BW_HVRET-GND:
000 ... baseline noise
001 ... 0.2mA
002 ... 0.4mA
 

  40   Tue May 19 11:01:29 2015 Hao YinBelle IIsystemPedestalPedestalRun

FIRRun001

Baseline measurement without injections, 50000 event,

room temperature.

noise results see attachments.

  54   Mon Nov 30 17:13:47 2015 Hao YinBelle IIsystemPedestalRun 

ADC Hot, FIRRun001

room temp pedrun

  59   Mon Nov 30 18:45:49 2015 Hao YinBelle IIsystemPedestalRun_Cold 

ADC Cold diff to hot: 1-3 adc delay config (max 1.5 ns), FIRRun_Cold_001

 

  33   Thu Jun 5 10:33:46 2014 Benedikt WürknerBelle IIsourceSilc ModuleSilc Angle Measurement 1°

Measured the Silc 03/10 Module using the Sr90 Source to have a comparison for the Eta-Distribution at different angles. 

Data can be found on heros in: /home/medialib/LAB_Silc_Angle. 

Plots made with TuxOA for all different regions can be found in /home/users/bwuerkner/plots/. 

 

  34   Thu Jun 5 10:34:06 2014 Benedikt WürknerBelle IIsourceSilc ModuleSilc Angle Measurement 4°

Measured the Silc 03/10 Module using the Sr90 Source to have a comparison for the Eta-Distribution at different angles. 

Data can be found on heros in: /home/medialib/LAB_Silc_Angle. 

Plots made with TuxOA for all different regions can be found in /home/users/bwuerkner/plots/. 

 

  35   Thu Jun 5 10:34:29 2014 Benedikt WürknerBelle IIsourceSilc ModuleSilc Angle Measurement 7°

Measured the Silc 03/10 Module using the Sr90 Source to have a comparison for the Eta-Distribution at different angles. 

Data can be found on heros in: /home/medialib/LAB_Silc_Angle. 

Plots made with TuxOA for all different regions can be found in /home/users/bwuerkner/plots/. 

 

  36   Thu Jun 5 10:34:45 2014 Benedikt WürknerBelle IIsourceSilc ModuleSilc Angle Measurement 10°

Measured the Silc 03/10 Module using the Sr90 Source to have a comparison for the Eta-Distribution at different angles. 

Data can be found on heros in: /home/medialib/LAB_Silc_Angle. 

Plots made with TuxOA for all different regions can be found in /home/users/bwuerkner/plots/. 

 

  1   Fri Apr 18 17:23:26 2008 Markus FriedlSPS Testbeam June08hybridhybrid 01Noise of hybrid 01, sensor fully bonded, no HV
HV bias not yet glued to backplane
  2   Tue Apr 22 19:34:09 2008 Markus FriedlSPS Testbeam June08modulehybrid 01Properties of hybrid 01, sensor fully bonded, HV=100V
HV bias glued to backplane, HV=100V
  3   Wed Apr 23 13:05:05 2008 Christian IrmlerSPS Testbeam June08sourcehybrid 01time correlation between TDC and sensor measurement -> 3.1 ns RMS
  4   Wed Apr 23 13:37:18 2008 Markus FriedlSPS Testbeam June08sourcehybrid 01analysis results of source test
Ignore the "KEK November 2007" title - that's a legacy and is already changed :-)

As of now, there is no distinction in 16 separate zones. However, the gaps between the the zones are clearly visible in the Hit Profile, as the edge strips on both sides have a larger sensitive area and thus collect more hits than other strips; hence the spikes in the (otherwise pretty gaussian) beam profile. There is a single strip with no entries in the center - that's the one that suffered from the bias bond repair action.
SNR=21 (peak mode) is pretty healthy and fits to similar detectors operated with APV25.
All data was taken in multi-peak mode with subsequent hit fitting to obtain amplitude and timing (see separate posting for timing precision).

The verbose output of the analysis is pasted below.


Analysis of vie_run001

Peak Mode, 3 x 200 initevents (first 10 skipped) + 99400 events
Number hybrids:  1	number zones:  2	 number sensors:  1
Using calibration file vie_cal001
No pedestal correction file
Seed/Neighbor/Cluster/Noisy Strips Cuts [RMS noise]: 5.0/3.0/5.0
Min. hitlength:   3


Comments:
SILC module 01
HV=100V, 40MHz, Tp=50ns, 30ns
Sr90 1mCi ,  black cloth cover



Analysis date: 23.04.2008 13:25:09


Analysis settings:
 runname: vie_run001_cluster
 clock: 40.00 MHz
 datafilepath: data/
 outputpath: output/
 subevents:  6
 fitmode: 2 (cal. fit)
 options: h




Results:

ModuleName           ZoneType    Ch    OKCh     OK%   Entries    MClW    MPSignal   Noise   MPSNR   HpSE  Occup
p_side            JP single sensor    256    256   100.0     90385    2.53    21546.1    729.4   20.68   0.53   1.81
  5   Wed Apr 30 16:52:17 2008 Markus FriedlBELLE Upgrademodulemicronmicron sensor glued to frame
soeben haben wir den micron-DSSD (double metal layer) in den 2-teiligen rahmen geklebt und auf beiden seiten
temporäre kapton-stückerln aufgeklebt, über die bias appliziert werden kann. nach trocknung und bonden der
bias-verbindungen (montag, 5.5.2008) wird dieser für sensor-tests zur verfügung stehen.
  14   Tue May 20 14:27:50 2008 Markus FriedlBELLE Upgradesourcemicronanalysis results of source test
*** NOTE: AFTER THIS MEASUREMENT WE REALIZED THAT BIASING WAS NOT DONE PROPERLY
          HENCE THE RESULTS BELOW ARE NOT RELIABLE 
          (in fact it is surprising that they are not worse) ***


Please find the results of the lab source test on the new Micron module here.
It is read out with 3 + 3 APV chips on either side.

Results table of the source measurement:
                      p-side     n-side
 Cluster signal [e]    18361      19434
 Strip noise [e]        1142       1193
 Avg cluster width      1.91       1.30
 Single strip SNR       16.1       16.3
 Cluster SNR            11.6       14.3
 Strip pitch [um]       50.0      153.5     

Apparently, the double metal capacitance is not so bad as expected, even though the Micron sensor does not use
the hourglass crossing scheme. Presumably the dielectric between metal 1 and 2 is rather thick (several um).
Strip noise is roughly the same on both p and n side, so the difference in Cluster SNR (*) only stems from the
unequal cluster width (which is a result of the different pitches).

Peak time precision vs SNR (last plot below) is worse compared to the values obtained with various HPK sensors
in the November 2007 beam test at KEK. However, this is a comparison of source and beam and thus might not be
significant. Let's see what we will get in the SPS beam test next week.

(*) Cluster SNR := sum(signal) / (strip_noise * sqrt(cluster_width) )
  12   Fri May 9 10:00:34 2008 Christian IrmlerSPS Testbeam June08modulemodule 03/10properties (noise, intcal), APVs bonded to the sensor
Module tested with 1 and 2 rows bonded to the sensor, respectively. HV = 100 V Ibias (100 V) = 18.9 nA Ibias (200 V) = 25.5 nA
  10   Wed May 7 19:05:08 2008 Christian IrmlerSPS Testbeam June08modulemodule 04/04properties (noise, intcal), APVs bonded to the sensor
Module tested with 1 and 2 rows bonded to the sensor, respectively. HV = 100 V Ibias (100 V) = 27.8 nA Ibias (200 V) = 32.7 nA
  13   Fri May 9 10:04:26 2008 Christian IrmlerSPS Testbeam June08modulemodule 05/05properties (noise, intcal), APVs bonded to the sensor
Module tested with 1 and 2 rows bonded to the sensor, respectively. HV = 100 V Ibias (100 V) = 18.0 nA Ibias (200 V) = 23.6 nA
  11   Fri May 9 09:56:15 2008 Christian IrmlerSPS Testbeam June08modulemodule 06/03properties (noise, intcal), APVs bonded to the sensor
Module tested with 1 and 2 rows bonded to the sensor, respectively. HV = 100 V Ibias (100 V) = 26.5 nA Ibias (200 V) = 37.8 nA
ELOG V3.1.4-966e3dd