Home CMS Production Clean room MedAustron HEPHY testbeams old
electronics module assembly SiDDaTA scratch
  HEPHY logbook of the Electronics Group, Page 3 of 4  Not logged in ELOG logo
Entry  Thu May 8 16:51:03 2014, Benedikt Würkner, Belle II, source, L3 module, No 1 of 6 room temperature measurements using Sr90 Source (single) 10x

Sr90 Radioactive Source
No cooling
Module position: 0:0(top left)
HV Turned to +40,-40V with currents. +1.0 and -1.0 µA

N+1.25V current: 0.22A
N+2.50V current: 0.57A
P+1.25V current: 0.26A
P+2.50V current: 0.72A

Events: 200000

Entry  Wed May 7 18:20:36 2014, Benedikt Würkner, Belle II, source, L3 module, No 6 of 6 room temperature measurements using Sr90 Source (multi6) 10x

Sr90 Radioactive Source
No cooling
Module position: -57:-30(bottom right)
HV Turned to +40,-40V with currents. +1.2 and -1.22 µA

N+1.25V current: 0.22A
N+2.50V current: 0.56A
P+1.25V current: 0.26A
P+2.50V current: 0.70A

Events: 200000

Entry  Wed May 7 17:33:21 2014, Benedikt Würkner, Belle II, source, L3 module, No 5 of 6 room temperature measurements using Sr90 Source (multi6) 10x

Sr90 Radioactive Source
No cooling
Module position: -32:-30(bottom center)
HV Turned to +40,-40V with currents. +1.22 and -1.24 µA

N+1.25V current: 0.22A
N+2.50V current: 0.56A
P+1.25V current: 0.26A
P+2.50V current: 0.70A

Events: 200000

Entry  Wed May 7 16:43:37 2014, Benedikt Würkner, Belle II, source, L3 module, No 4 of 6 room temperature measurements using Sr90 Source (multi6) 10x

Sr90 Radioactive Source
No cooling
Module position: -5:-30(bottom left)
HV Turned to +40,-40V with currents. +1.25 and -1.26 µA

N+1.25V current: 0.22A
N+2.50V current: 0.57A
P+1.25V current: 0.26A
P+2.50V current: 0.72A

Events: 200000

Entry  Wed May 7 15:53:38 2014, Benedikt Würkner, Belle II, source, L3 module, No 3 of 6 room temperature measurements using Sr90 Source (multi6) 10x

Sr90 Radioactive Source
No cooling
Module position: -59:-20(top right)
HV Turned to +40,-40V with currents. +1.25 and -1.26 µA

N+1.25V current: 0.22A
N+2.50V current: 0.56A
P+1.25V current: 0.26A
P+2.50V current: 0.71A

Events: 200000

Entry  Wed May 7 15:04:32 2014, Benedikt Würkner, Belle II, source, L3 module, No 2 of 6 room temperature measurements using Sr90 Source (multi6) 10x

Sr90 Radioactive Source
No cooling
Module position: -32:-20(top center)
HV Turned to +40,-40V with currents. +1.23 and -1.25 µA

N+1.25V current: 0.22A
N+2.50V current: 0.56A
P+1.25V current: 0.26A
P+2.50V current: 0.71A

Events: 200000

Entry  Wed May 7 14:36:29 2014, Benedikt Würkner, Belle II, source, L3 module, No 1 of 6 room temperature measurements using Sr90 Source (multi6) 10x

Sr90 Radioactive Source
No cooling
Module position: -5:-20(top left)
HV Turned to +40,-40V with currents. +1.2 and -1.2 µA

N+1.25V current: 0.22A
N+2.5 V current: 0.56A
P+1.25V current: 0.26A
P+2.50V current: 0.70A

Events: 200000

Entry  Sun Jul 4 05:48:36 2010, Christian Irmler, BELLE Upgrade, source, Origami 6 - module 1, run002: first analysis results 7x

Run name: run002

Run type: 0 (Hardware (Normal Run))
Comments:
After ~40min warmup
HV=80
90Sr 1mCi source - moved compared to run001
multi6

Max. Events=100000      Trg delay=25

Origami 6 module #1
w/o cooling
sensor: B2HPK_10938-9239_8

n-side: all 4 APVs read out
p-side: APV #0 to #3  read out, analog output of #4 and #5 were not connected to FADC board

 

 

Entry  Wed Oct 7 14:24:06 2009, Dieter Uhl, BELLE Upgrade, hybrid, #5, hybrid-pitchadapter pitchadapter5_lower_coat_opens.gifpitchadapter5_lower_coat.gifpitchadapter5_upper_coat_opens.gifpitchadapter5_upper_coat.gif

shorts at upper coat

pitchadapter5_upper_coat.gif

 

opens at upper coat

pitchadapter5_upper_coat_opens.gif

 

shorts at lower coat

pitchadapter5_lower_coat.gif

 

opens at lower coat

pitchadapter5_lower_coat_opens.gif

Entry  Wed Oct 7 14:23:35 2009, Dieter Uhl, BELLE Upgrade, hybrid, #4, hybrid-pitchadapter pitchadapter4_lower_coat.gifpitchadapter4_lower_coat_opens.gifpitchadapter4_upper_coat.gifpitchadapter4_upper_coat_opens.gif

opens at upper coat

pitchadapter4_upper_coat_opens.gif

 

shorts at upper coat

pitchadapter4_upper_coat.gif

 

opens at lower coat

pitchadapter4_lower_coat_opens.gif

 

shorts at lower coat

pitchadapter4_lower_coat.gif

Entry  Tue May 20 14:27:50 2008, Markus Friedl, BELLE Upgrade, source, micron, analysis results of source test 9x
*** NOTE: AFTER THIS MEASUREMENT WE REALIZED THAT BIASING WAS NOT DONE PROPERLY
          HENCE THE RESULTS BELOW ARE NOT RELIABLE 
          (in fact it is surprising that they are not worse) ***


Please find the results of the lab source test on the new Micron module here.
It is read out with 3 + 3 APV chips on either side.

Results table of the source measurement:
                      p-side     n-side
 Cluster signal [e]    18361      19434
 Strip noise [e]        1142       1193
 Avg cluster width      1.91       1.30
 Single strip SNR       16.1       16.3
 Cluster SNR            11.6       14.3
 Strip pitch [um]       50.0      153.5     

Apparently, the double metal capacitance is not so bad as expected, even though the Micron sensor does not use
the hourglass crossing scheme. Presumably the dielectric between metal 1 and 2 is rather thick (several um).
Strip noise is roughly the same on both p and n side, so the difference in Cluster SNR (*) only stems from the
unequal cluster width (which is a result of the different pitches).

Peak time precision vs SNR (last plot below) is worse compared to the values obtained with various HPK sensors
in the November 2007 beam test at KEK. However, this is a comparison of source and beam and thus might not be
significant. Let's see what we will get in the SPS beam test next week.

(*) Cluster SNR := sum(signal) / (strip_noise * sqrt(cluster_width) )
Entry  Fri May 9 10:04:26 2008, Christian Irmler, SPS Testbeam June08, module, module 05/05, properties (noise, intcal), APVs bonded to the sensor 12x
Module tested with 1 and 2 rows bonded to the sensor, respectively. HV = 100 V Ibias (100 V) = 18.0 nA Ibias (200 V) = 23.6 nA
Entry  Fri May 9 10:00:34 2008, Christian Irmler, SPS Testbeam June08, module, module 03/10, properties (noise, intcal), APVs bonded to the sensor 12x
Module tested with 1 and 2 rows bonded to the sensor, respectively. HV = 100 V Ibias (100 V) = 18.9 nA Ibias (200 V) = 25.5 nA
Entry  Fri May 9 09:56:15 2008, Christian Irmler, SPS Testbeam June08, module, module 06/03, properties (noise, intcal), APVs bonded to the sensor 12x
Module tested with 1 and 2 rows bonded to the sensor, respectively. HV = 100 V Ibias (100 V) = 26.5 nA Ibias (200 V) = 37.8 nA
Entry  Wed May 7 19:05:08 2008, Christian Irmler, SPS Testbeam June08, module, module 04/04, properties (noise, intcal), APVs bonded to the sensor 12x
Module tested with 1 and 2 rows bonded to the sensor, respectively. HV = 100 V Ibias (100 V) = 27.8 nA Ibias (200 V) = 32.7 nA
Entry  Wed May 7 16:12:58 2008, Christian Irmler, SPS Testbeam June08, module, module 12/08, properties (noise, intcal), APVs bonded to the sensor 12x
Module tested with 1 and 2 rows bonded to the sensor, respectively. HV = 100 V Ibias (100 V) = 22.2 nA Ibias (200 V) = 26.5 nA
Entry  Wed May 7 15:40:07 2008, Christian Irmler, SPS Testbeam June08, module, module 07/07, properties (noise, intcal), APVs bonded to the sensor 12x
Module tested with 1 and 2 rows bonded to the sensor, respectively. HV = 100 V Ibias (100 V) = 20.2 nA Ibias (200 V) = 21.9 nA
Entry  Wed May 7 15:26:24 2008, Christian Irmler, SPS Testbeam June08, module, module 20/09, properties (noise, intcal), APVs bonded to the sensor 12x
Module tested with 1 and 2 rows bonded to the sensor, respectively. HV = 100 V Ibias (100 V) = 25.1 nA Ibias (200 V) = 31.4 nA
Entry  Wed May 7 15:24:49 2008, Christian Irmler, SPS Testbeam June08, module, module 10/02, properties (noise, intcal), APVs bonded to the sensor 12x
Module tested with 1 and 2 rows bonded to the sensor, respectively. HV = 100 V Ibias (100V) = 19.1 nA Ibias (200V) = 23.7 nA
Entry  Wed Apr 30 16:52:17 2008, Markus Friedl, BELLE Upgrade, module, micron, micron sensor glued to frame 
soeben haben wir den micron-DSSD (double metal layer) in den 2-teiligen rahmen geklebt und auf beiden seiten
temporäre kapton-stückerln aufgeklebt, über die bias appliziert werden kann. nach trocknung und bonden der
bias-verbindungen (montag, 5.5.2008) wird dieser für sensor-tests zur verfügung stehen.
ELOG V3.1.5-fc6679b